

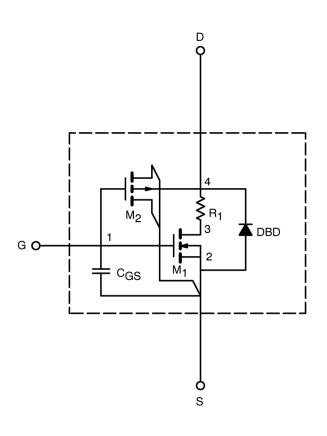
SPICE Device Model Si4922DY

Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-to-5V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{qd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

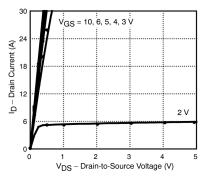
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

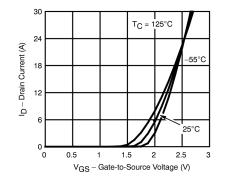
Vishay Siliconix

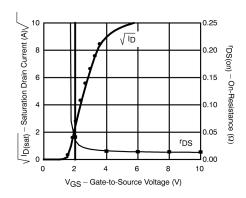
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)				
Parameter	Symbol	Test Conditions	Typical	Unit
Static				
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1.1	V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} \text{ = } 10 \text{ V}$	365	А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 8.8 A	0.013	Ω
		V_{GS} = 4.5 V, I _D = 8.3 A	0.015	
		V_{GS} = 2.5 V, I _D = 7.2 A	0.024	
Forward Transconductance ^a	g fs	V _{DS} = 15 V, I _D = 8.8 A	31	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1.7 A, $V_{\rm GS}$ = 0 V	0.72	V
Dynamic ^b				
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 8.8 A	22.8	nC
Gate-Source Charge	Q _{gs}		5.8	
Gate-Drain Charge	Q _{gd}		5.8	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R _L = 15 Ω I _D \cong 1 A, V _{GEN} = 10 V, R _G = 6 Ω I _F = 1.7 A, di/dt = 100 A/µs	13	ns
Rise Time	tr		17	
Turn-Off Delay Time	t _{d(off)}		20	
Fall Time	t _f		47	
Source-Drain Reverse Recovery Time	t _{rr}		30	

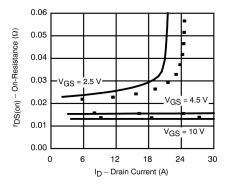
Notes

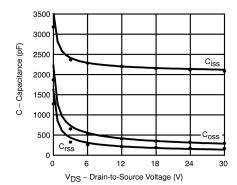
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

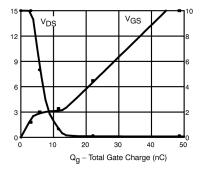

VI<u>SHA</u>Y




SPICE Device Model Si4922DY


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.